1Cro

Real-Time Streaming
with Python ML Inference

Marko Topolnik

About Us

Hazelcast started in 2008 as a distributed cache
Today: main focus on real-time distributed stream processing
Our claim to fame is best-in-class latency

| co-authored the execution engine

i HAZELCAST

Data Science: The Hype

L Do Data Science } { Profit!

HAZELCAST

Data Science: The Truth

[Package 1

/o

[Deploy 1
Do Data Science ~ Profit
(fingers crossed)
[Scale Up } /‘

\ [Re-Train }
[Scale Out } /

\ Monitor }

[Load-Balance

HAZELCAST

Example: Salary Prediction
Python, SciKit Learn, Random Forest

HAZELCAST

Training Data

"age": 25,

"workclass": "Self-emp”,
"fnlwgt": 176756,

"education”: "HS-grad",
"education-num”: 9,
"marital-status”: "Never-married”,
"occupation"”: "Farming-fishing",
"relationship”: "Own-child",
"capital-gain”: 0,
"capital-loss": 0,
"hours-per-week": 35,

"native-country”: "United-States”
"income": "<=50K" -- train ML to predict
}
ii»ii HAZELCAST

this!

e

208

Sample Input and Output

Input: {
"age": 25,
"workclass": "Self-emp”,
"fnlwgt": 176756,
"education”: "HS-grad",
"education-num”: 9,
"marital-status”: "Never-married”,
"occupation"”: "Farming-fishing",
"relationship”: "Own-child",

"capital-gain”: 0,
"capital-loss": 0,
"hours-per-week": 35,
"native-country”: "United-States”

}

HAZELCAST

<
+44
+4444

Output: {
"probability"”: 0.85
"income": "<=50K"

}

(Showing Project Directory)

HAZELCAST

We have a Web Service Doing ML!

L Client | —>
en J"

HAZELCAST

— W MmO

Productionizing the REST service

\
Request #1 >
R
A E
Request #2 > S
T
\
Request #3 >

Parallelism?

HAZELCAST

Productionizing the REST service

[Request #1 —> REST

[Request #2 —> REST
[Request #3 —> REST

Load-Balancing?

T T

HAZELCAST

11

Productionizing the REST service

Request #1 \
Load
Request #2 ‘ Balancer
Request #3 /
Batching?

HAZELCAST

REST
REST

REST

12

Effect of Batching on Throughput

SciKit Learn Random Forest, Batch Size 1024

== Batching == No Batching

60,000

40,000

20,000

0 5 10 15 20

Python Parallelism

HAZELCAST

13

Productionizing the REST service

Request #1 Batch
N
Request Batch /
Queue | —»
g Load
4 N\
Request #2 Response Balancer
Queue
o J
REST
Request #3

HAZELCAST

+44494
+44

Replace REST with Distributed Streaming

Request #1
)

Kafka
4_—
[Request #2

[Request #3

i HAZELCAST

Hazelcast
Cluster

15

Hazelcast Pipeline Code

Pipeline p = Pipeline.create();
p.readFrom(Kafka.source())

.apply(mapUsingPython(new PythonServiceConfig()
.setBaseDir("/Users/mtopol/dev/python/sklearn")
.setHandlerModule("example_1_inference_jet")))

.writeTo(Kafka.sink());

hz.newJob(p) ;

S mvn package
S hz submit target/my-job.jar

HAZELCAST

+4444
298¢
<
e
+4444

16

Pipeline Execution Plan

Batch

|

Python |—]
process | ——

[Kafka Topic A }

Jet Node 1 [

—

Source

/

/

mapUsing
Python

mapUsing
Python

HAZELCAST

u|
.

N
N

Sink

Batch

—

Python
process

|

N
I
Y

[Kafka Topic B }

17

Traditional Engine: Thread per Task

-

Core 1

Thread 1

o 4

Thread 2

\

J

~

N

Core 3

\

Thread 5

4

Thread 6

\

4

p

 HAZELCAST

Core 2

Thread 3

_ 4

Thread 4

L 4

Core 4

Thread 7

o)

\

Thread 8

/

Hazelcast's Engine: Thread per CPU Core

HAZELCAST

>

Core 2

{TKB

J

{Tk4

J

" coes

KTh ad 3

LTKS

J

[TkG

J

v,

N

\

),

Let's Start a Jet Cluster!

HAZELCAST

+44494
+44

Cluster Elasticity and Resilience

e processing jobs are fault-tolerant
e nodes can join and leave the cluster, jobs go on
e automatically rescale to available hardware

i HAZELCAST

21

Cluster Self-Formation

Hazelcast natively supports:

e Amazon AWS
e Google GCP
e Kubernetes

With simple configuration, the nodes self-discover in these
environments

 HAZELCAST

22

4444

Source and Sink Connectors

Kafka

Change Data Capture: MySQL, PostgreSQL, ...
HTTP: WebSocket, Server-Sent Events
Hadoop HDFS

S3 bucket

JDBC

JMS queue and topic

.1 HAZELCAST

23

Stream Operators

e windowed aggregation using Event Time
o sliding, session window
o count, sum, average, linear regression, ...
o custom aggregate function

rolling aggregation
streaming join (co-grouping)
hash join (enrichment)

contact arbitrary external services
o mapUsingPython uses this

§§¢zz HAZELCAST
+ S

24

Thanks for attending!

Q&A

marko@hazelcast.com
W @mtopolnik

i HAZELCAST

