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About Us

Hazelcast started in 2008 as a distributed cache
Today: main focus on real-time distributed stream processing
Our claim to fame is best-in-class latency

| co-authored the execution engine
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Data Science: The Hype

L Do Data Science } { Profit!
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Data Science: The Truth

[ Package 1

/o

[ Deploy 1
Do Data Science ~ Profit
(fingers crossed)
[ Scale Up } /‘

\ [ Re-Train }
[ Scale Out } /

\ Monitor }

[ Load-Balance
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Example: Salary Prediction
Python, SciKit Learn, Random Forest
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Training Data

"age": 25,

"workclass": "Self-emp”,
"fnlwgt": 176756,

"education”: "HS-grad",
"education-num”: 9,
"marital-status”: "Never-married”,
"occupation"”: "Farming-fishing",
"relationship”: "Own-child",
"capital-gain”: 0,
"capital-loss": 0,
"hours-per-week": 35,

"native-country”: "United-States”
"income": "<=50K" -- train ML to predict
}
ii»ii HAZELCAST
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Sample Input and Output

Input: {
"age": 25,
"workclass": "Self-emp”,
"fnlwgt": 176756,
"education”: "HS-grad",
"education-num”: 9,
"marital-status”: "Never-married”,
"occupation"”: "Farming-fishing",
"relationship”: "Own-child",

"capital-gain”: 0,
"capital-loss": 0,
"hours-per-week": 35,
"native-country”: "United-States”

}
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Output: {
"probability"”: 0.85
"income": "<=50K"

}



(Showing Project Directory)
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We have a Web Service Doing ML!
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Productionizing the REST service
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Parallelism?
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Productionizing the REST service

[ Request #1 —> REST

[ Request #2 —> REST
[ Request #3 —> REST

Load-Balancing?
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Productionizing the REST service

Request #1 \
Load
Request #2 ‘ Balancer
Request #3 /
Batching?
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Effect of Batching on Throughput

SciKit Learn Random Forest, Batch Size 1024

== Batching == No Batching
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Productionizing the REST service

Request #1 Batch
N
Request Batch /
Queue | —»
g Load
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Replace REST with Distributed Streaming

Request #1
)

Kafka
4_—
[ Request #2

[ Request #3
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Hazelcast Pipeline Code

Pipeline p = Pipeline.create();
p.readFrom(Kafka.source())

.apply(mapUsingPython(new PythonServiceConfig()
.setBaseDir("/Users/mtopol/dev/python/sklearn")
.setHandlerModule("example_1_inference_jet")))

.writeTo(Kafka.sink());

hz.newJob(p) ;

S mvn package
S hz submit target/my-job.jar
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Pipeline Execution Plan
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Traditional Engine: Thread per Task
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Hazelcast's Engine: Thread per CPU Core
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Let's Start a Jet Cluster!
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Cluster Elasticity and Resilience

e processing jobs are fault-tolerant
e nodes can join and leave the cluster, jobs go on
e automatically rescale to available hardware

i HAZELCAST
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Cluster Self-Formation

Hazelcast natively supports:

e Amazon AWS
e Google GCP
e Kubernetes

With simple configuration, the nodes self-discover in these
environments
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Source and Sink Connectors

Kafka

Change Data Capture: MySQL, PostgreSQL, ...
HTTP: WebSocket, Server-Sent Events
Hadoop HDFS

S3 bucket

JDBC

JMS queue and topic

.1 HAZELCAST
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Stream Operators

e windowed aggregation using Event Time
o sliding, session window
o count, sum, average, linear regression, ...
o custom aggregate function

rolling aggregation
streaming join (co-grouping)
hash join (enrichment)

contact arbitrary external services
o mapUsingPython uses this
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Thanks for attending!

Q&A

marko@hazelcast.com
W @mtopolnik
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