
Securing the monolith

1
Marko Jurisic

@JurisicMarko

Intro

2

3

Motivation

● 20 year old monolith

● self made security

● planned new features (wallet, p2p

payments)

● standard solution - RedHat SSO

4

Constraints

● fixed go-live date

● seamless user migration (6.5 million

users)

● all logged in users stay logged in

● gradual rollout (unleash)

● rollback scenarios

● everything stays better

No-Goes

● big bang release

● user logout

5

Modules

6

Motivation

20 year old monolith

● homemade solution

● new requirements

● state of the art tech (Red Hat SSO)

Photo by David Boca on Unsplash
(source)

https://unsplash.com/photos/5GHpV7ol5uI

7

Project plan

● start with business users (15k)

● a month or two

● do full rollout for web in about three

months

● apps immediately after desktop ��

https://apps.timwhitlock.info/emoji/tables/unicode#emoji-modal

8

Integration - first try

● business users login (15k)

● setup realm, clients and roles

● test migration and synchronization

● first hurdles with non-standard

behaviors

● extension with SPIs (Service Provider

Interface)

Challenges

● platform size

● 2 way real time synchronization

● REST API => kafka

● impossible to completely separate

user groups

Business user go-live in November
2019 🎉

https://apps.timwhitlock.info/emoji/tables/unicode#emoji-modal

9

User migration

Plan

● re-hash users passwords from

production database

● import users into Redhat SSO

● perform tests

● party

Plan

● re-hash users passwords from

production database

● import users into Redhat SSO

● perform tests

● party

Photo by Nathan Dumlao on Unsplash
(source)

https://unsplash.com/photos/Y-H5pu2oglE

10

Integration - second try

User federation

● keycloak’s way of fetching user data

from an external source

● commercial solutions?

● write our own component!

User management

● lightweight component written in

Kotlin

● Spring Boot and Spring Data

● just a thin layer providing REST

interface to the new database

11

12

Release

Release

● gradual rollout using unleash feature

toggles

● no explosions

Testing

● functional tests

● security audits (2x)

● performance tests (login, token refresh,

db)

● feature toggle tests (+rollback)

● integrity checker

● release!

🎉

https://apps.timwhitlock.info/emoji/tables/unicode#emoji-modal

13

Mobile rollout

App release

● 80% of our traffic comes from app

users

● use android staged release instead of

feature toggles

● routine, no need for a rollback scenario

● still had to support both auth methods

on the backend because of legacy apps

● release went fine

● party time!

Photo by Afif Kusuma on Unsplash
(source)

https://unsplash.com/photos/CT7IWRM7G5k

14

Mobile rollout

Showstopper

● small change, simple release

Photo by Artur Kornakov on Unsplash
(source)

● everything died

● no panic, no finger pointing

● service restored after 8 hours (backups

ftw!)

● restore service and analyze causes

Realistic event
portrayal

https://unsplash.com/photos/fiCgwFIeVX0

15

Post mortem

● better resilience, hystrix circuit breakers

● root cause analysis

● redhat SSO cold start

● redhat support ping-pong

● infinispan

16

Final state

● custom session management

● completely stateless

● switch from Redhat SSO to keycloak

● two keycloak clusters in dislocated data

centers

● upgrades without downtime

● it works the same, just better

Photo by Benjamin Davies on Unsplash
(source)

https://unsplash.com/photos/FiZTaNTj2Ak

Thank you!
Good Luck!

@JurisicMarko

